
Flypaper User's Manual Page 1

Flypaper

by Steve Berkley
Version 1.0.0

(demo)

-1-

Flypaper User's Manual Page 2

© 1995 BIAS. All
Rights Reserved.

-2-

Flypaper User's Manual Page 3

Table Of
Contents

1. Welcome

System Requirements
Installation
Patching in
Online Help

2. Flypaper Concepts

Sessions
Cues and Responses
Session Definitions

3. The Session Log Window

View Modes: MIDI View, Cue View
Play
Stop
Record
Clear Log
Stopping Hung Notes, All Notes Off
Creating a Transportable Updater

4. The Session Window

Creating New Session Definitions
Deleting Session Definitions
Moving Session Definitions
Creating and Modifying Cues
Changing the Channel or Port of a Cue
Find
Find Again
Count Occurrences
Invoking reactions manually
MIDI Cue Syntax

5. Cues
MIDI

-3-

Flypaper User's Manual Page 4

And Also
Alert
Beep
Value Display
Keyboard
Graphic Slider
Delay
Apple Event

6. Tutorial Documents

Appendix A: Standard MIDI Codes

Appendix B: Resources for Beginners

-4-

Flypaper User's Manual Page 5

DISCLAIMER

BIAS makes no warranties, expressed or implied about the usability of the provided software, including
the implied warranties of merchantability, fitness for a particular purpose and noninfringement. No oral or
written information or advice given by BIAS, its employees, distributors, dealers or agents shall create any
new warranties.

CUSTOMER SUPPORT

Owners of registered copies of Flypaper may obtain on-line or phone assistance with the software,
Monday through Friday, 9:00AM to 5:00PM PST.

email: sberkley@crl.com
Phone: 415-331-2446

"Flypaper"
is Copyright © 1995 BIAS (Berkley Integrated Audio Systems).

Macintosh™, Apple™, Finder™, and AppleEvent™
are registered trademarks of Apple Computer, Inc.

Filemaker Pro™ and Hypercard™
are registered trademarks of Claris Corp.

-5-

Flypaper User's Manual Page 6

 1. Welcome!

Welcome to Flypaper! Flypaper is a flexible MIDI software tool that will allow you to :

• Examine MIDI from hardware devices and other software applications
• Provide a set of flexible MIDI definitions to assist developers in the creation of
 new MIDI software and hardware.
• Store and send MIDI messages (including SYSEX dumps) limited only by the amount of
 available RAM.
• Route and modify MIDI messages, map MIDI to different sources

° Transpose incoming signals
° Map controllers to other controllers on different devices

• Allow for sophisticated notification options, which include
° Alerts, Beeps, Graphic Sliders and Keyboards
° Issue Apple Events to other applications upon receipt of a MIDI cue

• Automate complex MIDI tasks through Apple Events communications with Flypaper
° Create an editor for your MIDI device with an application like FileMaker Pro™ or
 HyperCard™ by sending Apple Events to Flypaper.

• Powerful searching options to locate specific MIDI bytes or definitions.
• Copy logs to the Clipboard, so you may format the MIDI log in a word processor and
 produce hard copies.

This manual is intended to serve as a reference source and learning aid in using the Flypaper software. It
may also be useful as supplemental material for courses and lectures introducing MIDI to music
technology students. If you are new to MIDI or the Macintosh, refer to Appendix A: Resources for
Beginners.

Demo Version Limitations

If you have obtained a demonstration version of Flypaper, please note that it has the following features
disabled, which appear in fully registered copies of Flypaper:

• File menu lacks Printing option.
• Limited usage (by date)
• File menu "Save" and "Save As" features disabled
• Sessions limited to 20 minutes.

You can obtain a fully registered copy of Flypaper by filling out the included Order Form, and sending it
with your check or money order to BIAS:

BIAS
202 Donahue Street
Sausalito, CA 94965

-6-

Flypaper User's Manual Page 7

1-415-331-2446

-7-

Flypaper User's Manual Page 8

System Requirements

To install Flypaper, you will need:

• A Macintosh computer with at least 1,500k of RAM available, and at least 500k
 available on a hard drive.
• System 7 or greater
• Color monitor (optional)
• MIDI interface and hardware (optional)
• Apple's Midi Manager 2.0.1 or later installed on your machine.

Installation

To install Flypaper, simply double click the icon for Flypaper. You will be asked where you wish to install
the software. Select the hard drive you wish to install Flypaper onto, then press the "Extract" button. A
folder will be created on your hard drive that contains:

• The Flypaper application
• The Flypaper Transportable Updater application
• Flypaper Tutorial documents
• Any "Read Me" TeachText files that contain up-to-date information regarding installation

and operation of Flypaper.

Patching In

After you open up the Flypaper application, you must make sure you connect lines of MIDI information in
and/or out of the Flypaper application using the Patchbay desk accessory or application that came with
your Apple MIDI Manager installation. Flypaper does not yet support Opcode System's OMS (Open MIDI
System).

If you double-clicked the Flypaper application while Appletalk was on, you may have received a message
indicating "The Printer Port is in Use...". If this happens and you would like to use your Printer Port for
MIDI messages, first Quit the Flypaper application, then open the Chooser and turn Appletalk OFF, and
finally double-click on the Flypaper application to start it again. It may be necessary to double-click on
your MIDI driver icon in the Patchbay window to reactivate the Printer port.

Open up the Patchbay application and connect incoming MIDI information into Flypaper's "inputs" and
outgoing information from Flypaper's "outputs" to some device or application that appears in the Patchbay
window:

-8-

Flypaper User's Manual Page 9

Try to keep all of your connections "symmetrical" by connecting pairs of inputs and outputs to
corresponding input and output pairs in Flypaper. For example, connect the output of the Apple MIDI
Driver Printer Port to "Input 1" of Flypaper. Then connect "Output 1" of Flypaper to the input of the Apple
MIDI Driver Printer Port.

Flypaper will remember your connections in the Patchbay and restore them the next time you launch the
Flypaper application.

-9-

Flypaper User's Manual Page 10

Online Help

While you are using Flypaper, you can use two types of online help. First Balloon Help may be activated
by pulling down the Balloon Help menu and selecting "Show Balloons." Balloon help will show you the
functions of each menu item as you move the mouse across different menu items. The second online
help available in Flypaper is under the Apple menu's "Help" item. This help system gives you detailed
information about how to use the Flypaper software.

click on the scroll bar to
scroll through the Help
Topic's text

Click on "Done" when
you are finished
receiving Help.

Choose a Help Topic
category from this pop-
up menu

-10-

Flypaper User's Manual Page 11

 2. Flypaper Concepts

Sessions
Flypaper records two types of information, MIDI cues defined by the user and the actual MIDI messages
received by Flypaper via Apple's MIDI Manager. Flypaper stores its dictionary of MIDI cues and the
actual MIDI messages into a Session Document. The MIDI messages (including timing and port
information) is held in the Session Document's log. You'll recognize a Flypaper Session Document on the
desktop by it's icon:

Tutorial 1

To open up Flypaper with a Session Document, simply double click the icon of the Session Document
from the document, or use the "Open" menu item from the File menu in Flypaper. The list of received
MIDI bytes are shown in the log, a scrollable window displaying MIDI messages. The MIDI cues are
shown in another window, the Session Window.

Cues and Responses

MIDI messages are difficult to read and locate information in, so Flypaper allows you to "define" a series
of MIDI messages into a collection called a cue. For example, MIDI Note-On messages are three bytes.
An example of a Note-On message would be:

90 40 50 (hexadecimal)

 The "9" of the 90 indicates that this is a Note-On message, while the "0" of the 90 tells us that the
message is on Channel 1. The next two bytes indicate the key number and the key velocity. In this case,
the key number is 64 (4 * 16 = 64...), which is an "E" for musicians, and the key velocity is 90. Once we
know all of this information, it is easy to define a "Note On" cue in Flypaper that becomes part of the
Session Document's vocabulary of MIDI messages. A cue has a name and an icon associated with it,
both of which you may specify when creating or editing a Flypaper cue (see Figure 1). This makes
reading your log and identifying MIDI messages much simpler, because you are no longer searching for
symbolic data.

Figure 1. Flypaper icons you can use for your cues and responses

 Once a MIDI cue is defined in Flypaper, you can search the log for instances of that cue, or you can set
up triggered responses to that cue. Responses are just like cues except that they issue some action
rather than identify a defined set of MIDI bytes. The simplest way to understand cues and responses is to
understand cues as "input" and responses as "output" from Flypaper. For instance, you may wish an alert
dialog to appear (a response) whenever a Sysex start message (a cue) is identified in the incoming MIDI
messages.

-11-

Flypaper User's Manual Page 12

Cues may also set or take user variables. Flypaper has sixteen user variables that may hold values
during your Flypaper session. For instance, you may want to store MIDI controller values in a user

-12-

Flypaper User's Manual Page 13

variable so that you can pass those controller values to the slider reaction, which shows a graphic slider
with some value.

Flypaper has eight cue types for you to work with. Two of the eight are cues, the other six are reactions.
Below is a brief description of what each cue does. For detailed information on the format and specifics
for each cue, please reference 5. Cues later in this manual.

 MIDI Cue and Reaction Cue
Holds a description of the MIDI information to search for, or the MIDI information to send out.

 And Also... Cue
Causes an additional reaction when the preceding cue is recognized.

This cue takes no description.

 Alert Reaction Cue
Brings up a dialog with some user-specified text in it when executed

Enter the text you wish to appear in the dialog into the description field of this reaction cue.

 Sound Reaction Cue
Plays the "System Beep" sound when executed

 Value Display Reaction Cue
This cue displays the value of a user variable.

 Keyboard Reaction Cue
Shows information on a graphic keyboard, by taking two values: which note to highlight and a which note
to unhighlight.

 Slider Reaction Cue
Shows information on a graphic slider, by taking one value: the value of the slider.

Shows information on a graphic slider.

 Delay Reaction Cue
Delays for a specified count of milliseconds when executed.

 Apple Event Cue

-13-

Flypaper User's Manual Page 14

Triggers a reaction when an Apple Event is received that matches the cue's definition (an Apple Event
type such as 'plno'.. you may define as many as you wish). This is a very powerful automation feature
that allows you to control your MIDI hardware and Flypaper from another Macintosh application such as
FileMaker Pro™ or HyperCard™. You can even control your Macintosh software with your MIDI
hardware!

Session Definitions

Flypaper allows you to organize a cue and a response together into a definition. A definition is one cue,
one response, and port and channel information to identify input and output. All definitions are shown in
the Flypaper document's Session Window (see Figure 2).

Figure 2. A Session Window, showing seven definitions.

Below is an example of a Session Definition. In this example, Pitch bend messages are identified by the
Pitch Bend Cue. Only those messages coming in through MIDI manager input port 1, on any channel, will
be identified in this definition. The reaction is to show the Pitch Bend value with a reaction cue called "PB
Slider." Note the output port and channel are not applicable to this particular reaction cue, because no
MIDI is being produced in response to receiving Pitch Bend MIDI messages.

-14-

Flypaper User's Manual Page 15

Here's an overview of how Flypaper works:

MIDI Messages
from MIDI Manager

Session Definitions

Cue, Channel, Port Reaction, Channel, Port

Cue, Channel, Port Reaction, Channel, Port

Cue, Channel, Port Reaction, Channel, Port

Cue, Channel, Port Reaction, Channel, Port

:
:
.

:
:
.

Store into
Session Log

Issue Reaction
(Alert, MIDI, etc.)

Store User Variables
Look for MIDI Messages matching Session Definition Cues

1 2 3

AppleEvents

1 The Apple MIDI Manager passes MIDI messages into Flypaper's MIDI Manager Input Ports

(which have been connected in Patchbay). All MIDI Messages are recorded into the Session's log, in
RAM (except in record mute mode).

2 MIDI Messages stored into the Session Log in RAM are then checked as quickly as possible

against cues in the Session Definitions. Any matches may also store values from MIDI Messages into
user variables. Incoming high-level Apple Events are also checked against the cues in the Session
Definitions.

3 If a MIDI Manager message matched a Session Definition's cue, the Session Definition's reaction

is invoked. This may cause an alert dialog, a sound, an output MIDI message, etc.

Flypaper's most important task is to store the incoming MIDI information into RAM (the Session Log).
Then, time permitting, it looks through the MIDI Messages stored on disk to look for Session Definition
cue matches. You may notice a significant lag in controller sliders and keyboards while using Flypaper,
depending upon the speed of your Macintosh. There are several techniques you can use to minimize the
lag between a MIDI Message and a Flypaper reaction.

• Responses take time, including the Blinking of Session Cues option, the Autofront
 option, and the Autoscroll option. Turn them off for optimal cue recognition and
 response speed.
• More Session Definitions take longer to search through on each incoming MIDI Message

-15-

Flypaper User's Manual Page 16

 3. The Session Log Window
The Session Log Window allows you to control the recording, playback, and display formatting of MIDI
information. The Session Log Window has six settings buttons on the left side of the window, and a
tabular listing of the MIDI messages divided up into four columns covering the majority of the Session Log
Window. The icons associated with different log options and functions will are framed with a dark colored
square if they are "on."

Cue View Option OFF Cue View Option ON

 The first column indicates the time at which a MIDI event was received by Flypaper. Times are shown
in

hours : seconds : milliseconds

format. The second column shows any recognized cues from the Session's list of cues. If more than one
cue is recognized in the MIDI data, all identified cues will appear in succession in the second column,
listed in the order they were identified. The third column shows the actual MIDI messages. The fourth
column shows which Flypaper MIDI Manager port the incoming messages were received from.

Figure 3-1. A Log Window

The scroll bar on the right side of the Session Document's log window is used to scroll through the MIDI
messages recorded in the log. The scroll bar arrows located at the upper and lower extremities of the bar
can be used to increment through the log one MIDI byte at a time.

-16-

Flypaper User's Manual Page 17

View Modes: MIDI View and Cue View

Clicking on the MIDI View button will toggle display of MIDI messages in the log on or off. If you don't
want to look at all of the incoming MIDI messages, turn the Cue View option off.

Clicking on the Cue View button will toggle display of recognized MIDI cues from your Session's cue
definitions on or off. If you don't want to see which cues are recognized in the list of MIDI messages, turn
the Cue View option off.

Play

Clicking on the Play button will cause the entire Session Log of MIDI to be played out from Flypaper's
MIDI Manager outputs. Input and output connections are assumed to be connected symmetrically in the
MIDI Manager Patchbay. For instance, if the MIDI message was originally recorded from Flypaper's Input
1 port, it will be played back through Flypaper's Output 1 port. If the Autoscroll Log option is on (See
Chapter 6- The Options Menu), Flypaper will scroll the log and highlight the current playback entry as it
plays the log back.

Stop

Clicking on the Stop button will cause playback of the MIDI log to cease. The Stop button only works
when a Flypaper log is being played back.

Record

Clicking on the Record button will trigger one of three recording modes for MIDI messages. The first
mode is indicated by a flashing red or black border around the Record button, called trigger record. In
trigger record, Flypaper waits until MIDI messages come in, and then begins recording the MIDI
messages into the log. The first MIDI message received is considered to be at time 0:00:00. The second
recording mode is called record start and is indicated by a solid red or black border around the Record
button. In record start mode, Flypaper immediately begins recording any MIDI messages. The first piece
of MIDI information is considered to be at time relative to when record start mode was initiated. The final
recording mode, record mute is indicated by two black slash lines through the Record button in addition
to a black border around the Record button. In record mute mode, no MIDI messages will be recorded to
the log.

-17-

Flypaper User's Manual Page 18

-18-

Flypaper User's Manual Page 19

Clear Log

To clear the log of any MIDI message that have been stored in your Session Document, click on the Clear
Log button. You will be warned that the log will be entirely cleared. The information stored in the Session
Document on disk is not actually cleared until you issue the "Save" command from the File menu.

Stopping Hung Notes, All Notes Off

If you have notes that are stuck on your synthesizer, you can issue an "All Notes Off" command to all
MIDI ports and channels attached to Flypaper by selecting the "Reset/All Notes Off" item from the
Options menu. This feature is also useful to bring all Session Definitions up to date with MIDI that has
been stored on disk. For instance, if Flypaper falls far behind in identifying cues, you can "catch up" with
the "Reset/All Notes Off" menu selection.

If your synthesizer does not support the All Notes Off MIDI controller message, then choose the
"Exhaustive All Notes Off" option from the Options menu. This will cause every note on every channel of
your keyboard to receive a note-on message with a velocity of zero, followed by a note-off message with
a velocity of zero. If you issue the "Reset/All Notes Off" command from the Options menu, and you still
hear hung notes, turn on the "Exhaustive All Notes Off" option in the Options menu. If you still hear hung
notes, check your connections in the Patchbay application/desk accessory.

Creating a Transportable Updater Application

Flypaper can place the MIDI data from your Session Log into a transportable application that other users
can use to receive sequences, system exclusive patches, or any other MIDI data that you have recorded.
You are free to distribute Transportable Update applications created by Flypaper with no licensing fees or
other costs as long as you do not modify the original Transportable Updater application.

In order to use the Transportable Updater option, you must first create a copy of the "Transportable
Updater.Original" file that came with your Flypaper application. You can do this from the Finder by finding
and selecting the "Transportable Updater.Original" application and then selecting "Duplicate" from the File
menu in the Finder. Never create an updater from your original "Transportable Updater.Original" file, as
you will not have a "blank" to install the MIDI messages into any longer. If this happens, reinstall the
"Transportable Updater.Original" application from your Flypaper installation disks.

The Transportable Updater will store and playback any messages from Port 1 stored in your Flypaper
Session Document's log. The Transportable Updater that you create will contain a copy of your Session
Log's MIDI messages, allowing another user to playback the messages through their MIDI devices
through a simple interface:

-19-

Flypaper User's Manual Page 20

User clicks Begin to
play your MIDI logUser clicks Stop to halt playback

of the MIDI Update.

"Comments" on the content of your
updater appears here.

Playback progress is
shown here

All available MIDI Manager outputs
are placed in a pop-up menu. Users
do not need to use the Patchbay
application as the patches are made
automatically for them when they
choose a menu item.

After recording MIDI messages into a Session Document's log, use the "Create Updater" command from
the File menu. Updaters contain a "comments" field that you may enter with up to 255 characters
describing the contents of the Transportable Updater. You will be asked to enter the comment after you
choose the "Create Updater" item from the File menu.

After entering the comments for your Transportable Updater, the Standard File Picker will appear, asking
you to locate a COPY of the Transportable Updater application that came with your Flypaper installation.
Find the duplicate of the Transportable Updater application and click "Open". Flypaper will automatically
install the contents of your current Session Document's log into the Transportable Updater.

When users click on the Stop button during playback from a Transportable Updater, the "Exhaustive All
Notes Off" mode is used to send note-on messages of velocity zero to every note on every channel of
their selected MIDI device.

-20-

Flypaper User's Manual Page 21

 4. The Session Window

The Session Window holds a scrollable list of Session Definitions. The Session Definitions are shown on
each line of the list, with six entries per line. The six columns are labeled Cue, Port, Channel, Reaction,
Port, Channel (see Figure 4-1).

Cue Which cue to look for in the incoming MIDI messages
Port The MIDI Manager port to look for the cue in
Channel The Channel to look for the MIDI message on.

Reaction Which reaction cue to initiate if the cue is recognized
Port Which port to send the reaction cue (for MIDI reactions only)
Channel Which channel to send the reaction cue on (for MIDI reactions only)

Creating New Session Definitions

To create a new Session Definition, select the "New Definition" menu item from the File menu. An empty
Session Definition will appear in your Session Window.

If you cannot use the "New Definition" menu item from the File menu, you must first open an existing
Session Document or create a new one with the "New Session" item from the File menu.

Deleting Session Definitions

To delete a Session Definition, select the definition you wish to delete my clicking on any item of the
Session Definition that you wish to delete, then select the "Delete Session Definition" menu item from the
File menu.

Moving Session Definitions

There may be times that you wish to move a session definition up or down in the list of Session
Definitions. For instance, you may want to position an "And Also..." cue below another definition. To
move a session definition up or down in the list of Session Definitions, click on a field of the Session
Definition you wish to move to select it, then press the arrow keys

on your keyboard to slide the Session Definition up or down.

Creating and Modifying Cues

To create a new cue, click on the cue column of any Session Definition and then select "Add Cue" or
"Edit Cue" from the Cue menu. If a the cue column for a session definition is empty, then you may simply
double-click on the cue column to add a new cue. If the cue column for the definition currently contains a
cue, then double-clicking on it will cause the "Edit Cue" window for come up for that cue.

-21-

Flypaper User's Manual Page 22

type the name
for your cue here

Click here to select a
different icon for your
cue

if your cue requires
descriptive information,
enter that here

Press cancel to abort
adding/editing the cue

Click here to accept the
new or edited cue

Choose from different
cue/reaction cue types
in this pop-up menu

This area contains
shortcuts or special
settings that vary for
different cue types

Changing the Channel or Port of a Cue

If your cue has the '#' symbol in it's definition, then the '#' symbol will be replaced with the current setting
of the Session Definition's channel field. To change the channel field, highlight the channel field of the
Session Definition by clicking once on it. The Channel menu will become available on the menu bar, and
you can select a new channel by selecting a value from the menu.

You may also change the port that the cue is recognized on by selecting the port field of a Session
Definition, and then choosing an item from the Port menu.

Find

To find an occurrence of a cue in the log, highlight the Session Definition cue you wish to locate by
clicking once on it and then use the "Find" item from the Search menu. Flypaper will beep if it cannot find
an occurrence of the cue in the log.

Find Again

To find another occurrence of a cue in the log, select the "Find Again" item from the Search menu after
using the "Find" command. Flypaper will beep if it cannot find any additional occurrences of the cue in
the log.

Count Occurrences

To count the number of occurrences of a cue in the log, select the "Count Occurrences" item from the
Search menu after using the "Find" command. Flypaper will beep if it cannot find occurrences of the cue
in the log. Otherwise, you will be presented with the number of occurrences Flypaper was able to find in
the log.

Invoking Reaction Cues Manually

-22-

Flypaper User's Manual Page 23

At times you may wish to test a reaction cue manually from Flypaper. For instance, you may wish to try
out an output MIDI cue to make sure it is working properly. In order to do this, hold down the [option] key.
The cursor will change from the arrow to a lightning bolt . While holding down the [option] key, click
on the Session Definition that you wish to invoke the reaction cue for.

MIDI Cue Syntax

To identify simple MIDI cue descriptors, type in the direct hexadecimal bytes you wish to search for,
separated by spaces. Spaces act as delimiters for MIDI bytes. For example, if you wanted to identify a
Sysex Start message, you would enter

F0

as the MIDI cue description.

When typing in the MIDI information that you wish to identify as a cue, Flypaper allows for some special
symbols that make your MIDI cue definitions more flexible.

@ Symbol
Use the @ symbol as a "wild card" search character that can be anything. For instance, if you wish to
identify note-on messages on any channel, not just channel 1 (e.g. "90") you would enter:

9@

as the MIDI cue descriptor.

$ Symbol
Use the $ symbol to store a 4-bit value into a Flypaper user variable. Sixteen user variables are
available, $0 through $F. Don't confuse the $ symbol with "hexadecimal." Flypaper treats all numbers
entered in the Add/Edit Cue dialog as hexadecimal values.

For example, to store the hi-byte of the key number in a note-on message and the low-byte of the key
number, enter

90 $0$1

as the MIDI cue descriptor. If you also wanted to capture key velocity information to user variables $2
and $3, type

90 $0$1 $2$3

Symbol
Use the # symbol to refer to the current Session Definition's channel.

Operators

The following symbols create an arithmetic operation :

+ Symbol
Adds two values together

- Symbol
Subtracts two values

-23-

Flypaper User's Manual Page 24

* Symbol
Multiplies two values

-24-

Flypaper User's Manual Page 25

/ Symbol
Divides two values

>
Bitwise SHIFT RIGHT on two values

<
Bitwise SHIFT LEFT on two values

&
Bitwise AND on two values

|
Bitwise OR on two values

For example, perhaps you want to transpose an incoming note on message. The Session Definition cue
descriptor would be:

90 $0$1 $2$3

and the Session Definition reaction cue descriptor could be:

90 $0$1+7 $2$3

using the arithmetic operator "+" to add seven (a perfect fifth) to every note on message's note number.

Figure 4-1. A Session Window, showing seven definitions.

-25-

Flypaper User's Manual Page 26

 5. Cues

Flypaper has a wealth of cues to identify incoming data, notify the user, transform messages, and output
actions. In short, cues are at the heart of Flypaper. Below is a description of each cue, the format that
the descriptive information on the cue must appear in, and an example usage of each cue type. Use the
following formats for editing or adding new cues to your Session Document with the "Add Cue" or "Edit
Cue" dialog accessible from the Edit menu.

MIDI Cue and Reaction Cue

The MIDI cue holds a description of the MIDI information to search for, or the MIDI information to send
out.

Format

Use the MIDI cue as a reaction cue by entering the MIDI bytes you wish to send out in the description
field. Output MIDI descriptions may also contain special characters @+/><*- described in Chapter 4,
"Midi Cue Syntax."

And Also... Cue

The "And Also..." cue causes an additional reaction when the preceding cue is recognized.

This cue takes no description.

Alert Reaction Cue

Brings up a dialog with some user-specified text in it when executed.

Enter the text you wish to appear in the dialog into the description field of this reaction cue.

Sound Reaction Cue

The Sound Reaction cue plays the "System Beep" sound when executed. The System Beep is set in the
Sound Control Panel.

This cue takes no description.

Value Display Reaction Cue

This cue displays the value of a user variable.

-26-

Flypaper User's Manual Page 27

Format

-27-

Flypaper User's Manual Page 28

Input

Values or variables to
display

Example- Displays contents of user variables
$1 and $2 as a byte (range 0-255 decimal)

$1 $2

Values or variables to
display

Keyboard Reaction Cue

Shows information on a graphic keyboard by taking two values: which note to highlight and a which note
to unhighlight.

Format

Slider Reaction Cue

Shows information on a graphic slider, by taking one value: the value of the slider.

Shows information on a graphic slider. The name of the cue becomes the name of the window containing
the slider.

Format

-28-

Flypaper User's Manual Page 29

Input

Values or variables to
display on slider

Example- Displays contents of user variables
$1 and $2 as a byte (range 0-255 decimal)

$1 $2

Values or variables to
display on slider

Delay Reaction Cue

Delays for a specified count of 16.6 millisecond increments when executed.

Format

Input
Example- Delays for 5 increments of 16.6
milliseconds (approximately 93 ms)

0 5

Values or variables
indicating amount of
delay

Values or variables
indicating amount of
delay

Apple Event Cue

The Apple Event cue can trigger a cue when an Apple Event is received that matches the cue's apple
event type that you specify (an Apple Event type such as 'plno'.. you may define as many as you wish).
You may also issue Apple Events as reaction cues. This is a very powerful automation feature that allows
you to control your MIDI hardware and Flypaper from another Macintosh application such as FileMaker
Pro™ or HyperCard™. You can even control your other Macintosh applications with your MIDI hardware!

-29-

Flypaper User's Manual Page 30

If you are sending an
event, enter the class
of the event to send
here

If you are sending an
event, enter the event
type to send here

If you are sending an
event, enter any data
(including variables)
you wish to send to an
application here

If you are sending an
event, click here to
select which
application to send the
event to. Note the
application must be
running to send it.

if you are receiving
an event, type the
event type you wish
to identify as a cue
here

if you are receiving an
event, type in any
variables you wish to
store data passed
along with the event
here.

-30-

Flypaper User's Manual Page 31

 6. Tutorials

Flypaper includes ten tutorial Session Documents for you to investigate and try out in order to understand
how Flypaper Session Documents can be created for different needs. You'll find the Tutorial documents
in the folder "Tutorials."

Tutorials

1. Playing back a Flypaper Log

This tutorial demonstrates how Flypaper can:

• Playback MIDI information from a Session Document's log.

1. Make sure Appletalk is off if you use your Printer port for MIDI activity.

2. Open the Flypaper Session Document "Tutorial 1-Playing back a Log" which is in the Tutorials folder.

3. Make sure Flypaper's MIDI Manager "Output 1" is connected to a MIDI output device (a synth, sampler,
or internal synthesizer) by using the Patchbay application. After starting up Flypaper, switch to the
Patchbay application to make your patches (don't Quit Flypaper as you will not see the Flypaper
application in the Patchbay window). Assign Channel 1 of your output MIDI device to a piano sound if
one is available.

4. Press the Record button in the Flypaper Log Window until it is in record mute mode:

This keeps MIDI messages from being recorded into the log while you are playing back the log.

5. Press the Play button in the Flypaper Log Window. You should hear a counterpoint example.

6. If you grow tired of this masterpiece, press the Stop button in the Flypaper Log Window.

-31-

Flypaper User's Manual Page 32

2. Note on, Note off

This tutorial demonstrates how Flypaper can :

• Use cues to identify MIDI messages as "Note On" or "Note Off"
• Hold note on and note off information in "user variables."

1. Make sure Appletalk is off if you use your Printer port for MIDI activity.

2. Open the Flypaper Session Document "Tutorial 2-Note On, Note Off" which is in the Tutorials folder.

3. Make sure Flypaper's MIDI Manager "Input 1" is connected to a MIDI input device (a synth, sampler, or
internal synthesizer) by using the Patchbay application. After starting up Flypaper, switch to the Patchbay
application to make your patches (don't Quit Flypaper as you will not see the Flypaper application in the
Patchbay window)

4. Play some notes on your MIDI input device. Make sure it is transmitting on Channel 1. You should see
the "Note On" cue become selected when you press a key, and the "Note Off" cue become selected when
you release a key.

This Flypaper Session contains two Session Definitions. Both definitions have no reactions, just cues.
The cue for "Note On" looks like:

MIDI Note-On messages consist of a Note-On Message in the upper 4 bytes (the "9"), followed by the
channel (here, the "0" means channel 1), then the note number (ranges hexadecimal 0 - 7F), then the
note velocity (ranges hexadecimal 0-7F)

The "Note On" cue recognizes MIDI messages with a hexadecimal 90 as a Note-On cue. In addition, this
cue definition stores the note number into user variables 1 and 2 (indicated by "$1$2"), and then stores
the key velocity into user variables 3 and 4 (indicated by "$3$4"). Any variable numbers could have been
used to store the note numbers and the key velocities.

If you study the Note-off cue's definition, you will find that it is very similar to the Note-On cue's
description.

You will see in Tutorial 3 how you can utilize user variables to activate a graphic keyboard that displays
which keys are on and which keys are off.

-32-

Flypaper User's Manual Page 33

3. Adding a Keyboard

This tutorial demonstrates how Flypaper can

• Show information with the graphic keyboard
• Find occurrences of cues in the MIDI log.

1. Make sure Appletalk is off if you use your Printer port for MIDI activity.

2. Open the Flypaper Session Document "Tutorial 2-Note On, Note Off" which is in the Tutorials folder.

3. Make sure Flypaper's MIDI Manager "Input 1" is connected to a MIDI input device (a synth, sampler, or
internal synthesizer) by using the Patchbay application. After starting up Flypaper, switch to the Patchbay
application to make your patches (don't Quit Flypaper as you will not see the Flypaper application in the
Patchbay window)

4. Play some notes on your MIDI input device. Make sure it is transmitting on Channel 1. You should see
the "Note On" cue become selected when you press a key, and the "Note Off" cue become selected when
you release a key. You should also see an actual graphic illustration of which keys are pressed down on
your keyboard on the "Keys!" window.

This Flypaper Session Document contains the same two Session Definitions that were used in Tutorial 2,
but now the Session Definitions have reactions defined for Note On and Note Off events. In fact, the
reaction defined for the Note-On cue and the reaction defined for the Note-Off cue are the same in this
Tutorial; they are both a graphic keyboard.

The graphic keyboard reaction cue takes two arguments for it's descriptor... a note on value and a note-off
variable. The note-on variable tells the graphic keyboard which piano key to highlight, and the note-off
variable tells the graphic keyboard which piano key to.

As you learned in Tutorial 2, the note-on key numbers are being stored into user variables 1 and 2.
Additionally, the note-off key numbers are stored into user variables 5 and 6. Since the graphic keyboard
wants two values, highlight number and unhighlight number, the graphic keyboard's reaction cue looks
like:

 Now highlight the Note On Session Definition cue in the Session Window. The note-on cue is now
"selected." Pull down the Search menu and select the "Find" menu item. You will see the Session Log
scroll to the first occurrence of the Note-On cue in the log. The Note-On log event will be highlighted. To
view the next occurrence of a Note-On cue in the log, pull down the Search menu again and select the
"Find Next" menu item. You can continue with the "Find Next" menu command until the last occurrence of

-33-

Flypaper User's Manual Page 34

the Note-On cue is found. When there are no

-34-

Flypaper User's Manual Page 35

more occurrences of the Note-On cue, your Macintosh will beep. Use the "Find" menu item in the Search
menu to begin the search again at the top of the Session Log. This is how you can find the location, time,
and context in which a MIDI cue occurs in your recorded MIDI log.

-35-

Flypaper User's Manual Page 36

4. Graphs
This tutorial demonstrates how Flypaper can

• Display information on the graphic slider

1. Make sure Appletalk is off if you use your Printer port for MIDI activity.

2. Open the Flypaper Session Document "Tutorial 2-Note On, Note Off" which is in the Tutorials folder.

3. Make sure Flypaper's MIDI Manager "Input 1" is connected to a MIDI input device (a synth, sampler, or
internal synthesizer) by using the Patchbay application. After starting up Flypaper, switch to the
Patchbay application to make your patches (don't Quit Flypaper as you will not see the Flypaper
application in the Patchbay window)

4. Move a controller on your MIDI input device (i.e. Mod Wheel, Controller). Make sure it is transmitting
on Channel 1. You should see the "Controller" cue become selected when you move the controller. You
should also see an actual graphic slider of the controller as the controller is moved on your MIDI device
on the "Controller Slider" window.

The controller reaction cue takes one variable, a value between 0 and 7F hexadecimal. This Tutorial
reinforces the concepts learned in Tutorial 2 and Tutorial 3 but with a graphic slider instead of a
keyboard. These values were stored into the user variables 3 and 4 when the controller cue was
identified.

The controller cue looks for MIDI "B" followed by a "0" hexadecimal ("0" being channel 1). Controller
messages contain the controller byte ("B" followed by the channel), the controller number (another byte),
and then the controller value (another byte):

Bc vw xy

where
c is the channel
v is the upper four bits of the controller number
w is the lower four bits of the controller number

x is the upper four bits of the controller value
y is the lower four bits of the controller value

-36-

Flypaper User's Manual Page 37

5. MIDI Delays
This tutorial demonstrates how Flypaper can

• Use delays
• Do more than one reaction per cue using the "And Also..." cue type
• Issue MIDI responses
• Use the Value Display response cue

1. Make sure Appletalk is off if you use your Printer port for MIDI activity.

2. Open the Flypaper Session Document "Tutorial 5-MIDI Delays" which is in the Tutorials folder.

3. Make sure Flypaper's MIDI Manager "Input 1" is connected to a MIDI input device (a synth, sampler, or
internal synthesizer) by using the Patchbay application. After starting up Flypaper, switch to the
Patchbay application to make your patches (don't Quit Flypaper as you will not see the Flypaper
application in the Patchbay window). Make sure Flypaper's "Output 1" is connected to the same device
that is connected to Flypaper's "Input 1".

4. Play some notes on your MIDI input device. Make sure it is transmitting on Channel 1. You should
hear a repeat of each note, arpreggiations of chords, and a general backlog of time dependent upon your
Mod-wheel position or other MIDI controller between note-on events.

Notice that the second Session Definition cue, titled "then do this" is a Session cue of the type "And
Also...". When the Note-On Session Definition cue on the first line is triggered by a MIDI Note on
message on the line above, Flypaper checks the Session Definition below it to see if it is a cue of the
"And Also..." type. After the delay reaction cue on the first line Session Definition is invoked, Flypaper
invokes the reaction cue on the second line Session Definition. The reaction of the second line Session
Definition is to create a note-on exactly like the note on that came in. The note-on cue stored the note
number and key velocity into user variables so it could reproduce the note after the delay. The note-off
Session Definition cue on line three turns the duplicate note off.

Since each note-on event must pass through the delay, chords will cause a delayed arpreggiation effect.

-37-

Flypaper User's Manual Page 38

6. Alerts and System Beeps while recording SYSEX

1. Make sure Appletalk is off if you use your Printer port for MIDI activity.

2. Open the Flypaper Session Document "Tutorial 2-Note On, Note Off" which is in the Tutorials folder.

3. Make sure Flypaper's MIDI Manager "Input 1" is connected to a MIDI input device (a synth, sampler, or
internal synthesizer) by using the Patchbay application. After starting up Flypaper, switch to the
Patchbay application to make your patches (don't Quit Flypaper as you will not see the Flypaper
application in the Patchbay window)

4. Issue a MIDI System Exclusive (Sysex) message from your MIDI controller device, if possible. This is
usually referred to as a "dump" of user parameters, samples, or some other data exclusive to the MIDI
device.

You should see the Sysex Start Session definition cue become selected as soon as you issue the MIDI
Sysex Exclusive transmission from your MIDI controller device, and you will hear a beep. The Sysex
Start Session Definition cue searches for occurrences of "F0" in the incoming MIDI messages. If one is
located, Flypaper issues the beep reaction. Note on larger system exclusive messages Flypaper may
first attain to recording the MIDI information to disk before it recognizes the Sysex Start cue.

When the Sysex End Session definition cue is triggered (by an incoming "F7" in the MIDI messages), the
Note... Session definition reaction cue is triggered. The Alert type reaction cue brings up a user-dialog
giving the time of the reaction, and a user-specified text message. You can edit the user message by
double clicking on the Note... Session Definition cue on the second line of the Session Window.

-38-

Flypaper User's Manual Page 39

10. Apple Events automation of Flypaper (Filemaker Pro™)

You will need the Filemaker Pro™ application from Claris to use this example.

1. Make sure Appletalk is off if you use your Printer port for MIDI activity. If you've come this far, you
probably already have automatic connections to Flypaper's MIDI Manager input and output ports. If you
don't launch Flypaper, connect the ports, and quit.

2. Open the Filemaker Pro™ document "FMPro Tutorial 10" which is in the Tutorials folder.

After Filemaker Pro starts up, you should see a window with three buttons on it: setup, play notes, and
stop notes. Each button has a Script associated with it (a series of Filemaker Pro actions, such as issuing
Apple Events), so when you click on the button, the script is performed.

Click on the setup button. The setup button sends AppleEvents to open up the Flypaper application with
the "Tutorial 10-Apple Events" Session Document. You can look at the script from Filemaker Pro™ by
selecting the "ScriptMaker™..." menu item from the Scripts menu and then double clicking on the script
titled "Load Tutorial-10".

The Flypaper Tutorial 10 document contains two Apple Event cues, titled AE #1 and AE #2. The AE #1
Session cue contains a four-character identifier that identifies the Apple Event type to search for in
incoming events. This can be any four characters you choose, in this case, "pln1" and "pln2" were
chosen. When an Apple Event comes into Flypaper that matches "pln1" or "pln2", the appropriate
reaction cues for the Session Definitions are invoked.

Click on the play notes button. You should hear two notes from the MIDI device connected to Output 1 of
Flypaper's MIDI Manager ports. When you click on the stop notes button, the notes should stop playing.
The play notes button sends an Apple Event type "pln1" to Flypaper. If you examine the Apple Event
description of the "Play Notes" script in Filemaker Pro™, you will also find that the class is "flae".

Flypaper will ignore any AppleEvents that are not of the class ID "flae".

Similarly, the stop notes button sends an Apple Event type "pln2" to Flypaper, which causes the note-off
messages to be sent to the two notes turned on with the play notes button.

With Apple Events automation, you can quickly assemble Filemaker Pro™ interfaces that control your
MIDI hardware. External editors can quickly be assembled. You might even try to build a database that
automatically loads presets into memory on your synthesizer and then auditions a sound for you.

-39-

Flypaper User's Manual Page 40

 Appendix A:Standard MIDI Messages
Bold hexadecimal characters are constant, and identify the type of MIDI Message.

Note On

9c Nn Vv
c = Channel number (range 0 - F)
N=Upper 4 bits of note number
n=Lower 4 bits of note number
V=Upper 4 bits of key velocity
v = Lower 4 bits of key velocity

Note Off

8c Nn Vv
c = Channel number (range 0 - F)
N=Upper 4 bits of note number
n=Lower 4 bits of note number
V=Upper 4 bits of key velocity
v = Lower 4 bits of key velocity

Touch

Dc Xx
c = Channel number (range 0 - F)
X = Upper 4 bits of key touch amount
x = lower 4 bits of key touch amount

Preset Change

Cc Xx
c = Channel number (range 0 - F)
X = Upper 4 bits of preset number
x = lower 4 bits of preset number

Controller

Bc Nn Xx
c = Channel number (range 0 - F)
N = Upper 4 bits of controller number
n= lower 4 bits of controller number
X = Upper 4 bits of controller amount
x = Lower 4 bits of controller amount

Pitch Bend

Ec Xx Yy

-40-

Flypaper User's Manual Page 41

c = Channel number (range 0 - F)
X = Upper 4 bits of MSB (Most Significant Byte=1st byte of 2) of bend amount
x= lower 4 bits of MSB of bend amount

-41-

Flypaper User's Manual Page 42

Y = Upper 4 bits of LSB (Least Significant Byte=2nd byte of 2) of bend amount
v= Lower 4 bits of LSB of bend amount

Start of System Exclusive Message

F0
End of System Exclusive Message

F7
Time Code

F8

-42-

Flypaper User's Manual Page 43

 Appendix B:Resources for Beginners

 The USENET MIDI Primer

 Bob McQueer

PURPOSE

It seems as though many people in the USENET community have an interest in the Musical Instrument
Digital Interface (MIDI), but for one reason or another have only obtained word of mouth or fragmentary
descriptions of the specification. Basic questions such as "what's the baud rate?", "is it EIA?" and the like
seem to keep surfacing in about half a dozen newsgroups. This article is an attempt to provide the basic
data to the readers of the net.

REFERENCE

The major written reference for this article is version 1.0 of the MIDI specification, published by the
International MIDI Association, copyright 1983. There exists an expanded document. This document,
which I have not seen, is simply an expansion of the 1.0 spec. to contain more explanatory material, and
fill in some areas of hazy explanation. There are no radical departures from 1.0 in it. I have also heard of
a "2.0" spec., but the IMA claims no such animal exists. In any event, backwards compatibility with the
information I am presenting here should be maintained.

CONVENTIONS

I will give constants in C syntax, ie. 0x for hexadecimal. If I refer to bits by number, I number them
starting with 0 for the low order (1's place) bit. The following notation:

>>

text

<<

will be used to delimit commentary which is not part of the "bare- bones" specification. A sentence or
paragraph marked with a question mark in column 1 is a point I would kind of like to hear something about
myself.

OK, let's give it a shot.

PHYSICAL CONNECTOR SPECIFICATION

The standard connectors used for MIDI are 5 pin DIN. Separate sockets are used for input and output,
clearly marked on a given device. The spec. gives 50 feet as the maximum cable length. Cables are to
be shielded twisted pair, with the shield connecting pin 2 at both ends. The pair is pins 4 and 5, pins 1 and
3 being unconnected:

2 5 4
3 1

A device may also be equipped with a "MIDI-THRU" socket which is used to pass the input of one device
directly to output.

-43-

Flypaper User's Manual Page 44

>> I think this arrangement shows some of the original conception of MIDI more as a way of allowing
keyboardists to control multiple boxes than an instrument to computer interface. The

-44-

Flypaper User's Manual Page 45

"daisy-chain" arrangement probably has advantages for a performing musician who wants to play
"stacked" synthesizers for a desired sound, and has to be able to set things up on the road. <<

ELECTRICAL SPECIFICATION

Asynchronous serial interface. The baud rate is 31.25 Kbaud (+/- 1%). There are 8 data bits, with 1 start
bit and 1 stop bit, for 320 microseconds per serial byte.

MIDI is current loop, 5 mA. Logic 0 is current ON. The specification states that input is to be opto-
isolated, and points out that Sharp PC-900 and HP 6N138 optoisolators are satisfactory devices. Rise
and fall time for the optoisolator should be less than 2 microseconds.

The specification shows a little circuit diagram for the connections to a UART. I am not going to
reproduce it here. There's not much to it - I think the important thing it shows is +5 volt connection to pin
4 of the MIDI out with pin 5 going to the UART, through 220 ohm load resistors. It also shows that you're
supposed to connect to the "in" side of the UART through an optoisolator, and to the MIDI-THRU on the
UART side of the isolator.

>> I'm not much of a hardware person, and don't really know what I'm talking about in paragraphs like
the three above. I DO recognize that this is a "non-standard" specification, which won't work over serial
ports intended for anything else. People who do know about such things seem to either have giggling or
gagging fits when they see it, depending on their dispos- itions, saying things like "I haven't seen current
loop since the days of the old teletypes". I also know the fast 31.25 Kbaud pushes the edge for clocking
commonly available UART's. <<

DATA FORMAT

For standard MIDI messages, there is a clear concept that one device is a "transmitter" or "master", and
the other a "receiver" or "slave". Messages take the form of opcode bytes, followed by data bytes.
Opcode bytes are commonly called "status" bytes, so we shall use this term.

>> very similar to handling a terminal via escape sequences. There aren't ACK's or other handshaking
mechanisms in the protocol. <<

Status bytes are marked by bit 7 being 1. All data bytes must contain a 0 in bit 7, and thus lie in the range
0 - 127.

MIDI has a logical channel concept. There are 16 logical channels, encoded into bits 0 - 3 of the status
bytes of messages for which a channel number is significant. Since bit 7 is taken over for marking the
status byte, this leaves 3 opcode bits for message types with a logical channel. 7 of the possible 8
opcodes are used in this fashion, reserving the status bytes containing all 1's in the high nibble for
"system" messages which don't have a channel number. The low order nibble in these remaining
messages is really further opcode.

>> If you are interested in receiving MIDI input, look over the SYSTEM messages even if you wish to
ignore them. Especially the "system exclusive" and "real time" messages. The real time messages may
be legally inserted in the middle of other data, and you should be aware of them, even though many
devices won't use them. <<

VOICE MESSAGES

I will cover the message with channel numbers first. The opcode determines the number of data bytes for
a single message (see "running status byte", below). The specification divides these into "voice" and
"mode" messages. The "mode" messages are for control of the logical channels, and the control opcodes
are piggybacked onto the data bytes for the "parameter" message. I will go into this after describing the

-45-

Flypaper User's Manual Page 46

"voice messages". These messages are:

status byte meaning data bytes

-46-

Flypaper User's Manual Page 47

0x80-0x8f note off 2 - 1 byte pitch, followed by 1 byte velocity
0x90-0x9f note on 2 - 1 byte pitch, followed by 1 byte velocity
0xa0-0xaf key pressure 2 - 1 byte pitch, 1 byte pressure (after-touch)
0xb0-0xbf parameter 2 - 1 byte parameter number, 1 byte setting
0xc0-0xcf program 1 byte program selected
0xd0-0xdf chan. pressure 1 byte channel pressure (after-touch)
0xe0-0xef pitch wheel 2 bytes gives a 14 bit value, least significant 7 bits first

Many explanations are necessary here:

For all of these messages, a convention called the "running status byte" may be used. If the transmitter
wishes to send another message of the same type on the same channel, thus the same status byte, the
status byte need not be resent.

Also, a "note on" message with a velocity of zero is to be synonymous with a "note off". Combined with
the previous feature, this is intended to allow long strings of notes to be sent without repeating status
bytes.

>> From what I've seen, the "zero velocity note on" feature is very heavily used. My six-trak sends
these, even though it sends status bytes on every note anyway. Roland stuff uses it. <<

The pitch bytes of notes are simply number of half-steps, with middle C = 60.

>> On keyboard synthesizers, this usually simply means which physical key corresponds, since the
patch selection will change the actual pitch range of the keyboard. Most keyboards have one C key
which is unmistakably in the middle of the keyboard. This is probably note 60. <<

The velocity bytes for velocity sensing keyboards are supposed to represent a logarithmic scale.
"advisable" in the words of the spec. Non-velocity sensing devices are supposed to send velocity 64.

The pitch wheel value is an absolute setting, 0 - 0x3FFF. The 1.0 spec. says that the increment is
determined by the receiver. 0x2000 is to correspond to a centered pitch wheel (unmodified notes)

>> I believe standard scale steps are one of the things discussed in expansions. The six-trak pitch
wheel is up/down about a third. I believe several makers have used this value, but I may be wrong.

The "pressure" messages are for keyboards which sense the amount of pressure placed on an already
depressed key, as opposed to velocity, which is how fast it is depressed or released.

? I'm not really certain of how "channel" pressure works. Yamaha is one maker that uses these
messages, I know. <<

Now, about those parameter messages.

Instruments are so fundamentally different in the various controls they have that no attempt was made to
define a standard set, like say 9 for "Filter Resonance". Instead, it was simply assumed that these
messages allow you to set "controller" dials, whose purposes are left to the given device, except as noted
below. The first data bytes correspond to these "controllers" as follows:

data byte

0 - 31 continuous controllers 0 - 31, most significant byte
32 - 63 continuous controllers 0 - 31, least significant byte

-47-

Flypaper User's Manual Page 48

64 - 95 on / off switches
96 - 121 unspecified, reserved for future.
122 - 127 the "channel mode" messages I alluded to above. See below.

The second data byte contains the seven bit setting for the controller. The switches have data byte 0 =
OFF, 127 = ON with 1 - 126 undefined. If a controller only needs seven bits of resolution, it is supposed to
use the most significant byte. If both are needed, the order is specified as most significant followed by
least significant. With a 14 bit controller, it is to be legal to send only the least significant byte if the most
significant doesn't need to be changed.

>> This may of, course, wind up stretched a bit by a given manufacturer. The Six-Trak, for instance,
uses only single byte values (LEFT justified within the 7 bits at that), and recognizes >32 parameters <<

Controller number 1 is standardized to be the modulation wheel.

? Are there any other standardizations which are being followed by most manufacturers?

MODE MESSAGES

These are messages with status bytes 0xb0 through 0xbf, and leading data bytes 122 - 127. In reality,
these data bytes function as further opcode data for a group of messages which control the combination
of voices and channels to be accepted by a receiver.

An important point is that there is an implicit "basic" channel over which a given device is to receive these
messages. The receiver is to ignore mode messages over any other channels, no matter what mode it
might be in. The basic channel for a given device may be fixed or set in some manner outside the scope
of the MIDI standard.

The meaning of the values 122 through 127 is as follows:

data byte name second data byte
122 local control 0 = local control off, 127 = on
123 all notes off 0
124 omni mode off 0
125 omni mode on 0
126 monophonic mode number of

monophonic channels, or 0
for a number equal to
receivers voices

127 polyphonic mode 0

124 - 127 also turn all notes off.

Local control refers to whether or not notes played on an instruments keyboard play on the instrument or
not. With local control off, the host is still supposed to be able to read input data if desired, as well as
sending notes to the instrument. Very much like "local echo" on a terminal, or "half duplex" vs. "full
duplex".

The mode setting messages control what channels / how many voices the receiver recognizes. The
"basic channel" must be kept in mind. "Omni" refers to the ability to receive voice messages on all
channels. "Mono" and "Poly" refer to whether multiple voices are allowed. The rub is that the omni on/off
state and the mono/poly state interact with each other. We will go over each of the four possible settings,
called "modes" and given numbers in the specification:

mode 1 - Omni on / Poly - voice messages received on all channels and assigned polyphonically.
Basically, any notes it gets, it plays, up to the number of voices it's capable of.

-48-

Flypaper User's Manual Page 49

-49-

Flypaper User's Manual Page 50

mode 2 - Omni on / Mono - monophonic instrument which will receive notes to play in one voice on all
channels.

mode 3 - Omni off / Poly - polyphonic instrument which will receive voice messages on only the basic
channel.

mode 4 - Omni off / Mono - A useful mode, but "mono" is a misnomer. To operate in this mode a receiver
is supposed to receive one voice per channel. The number channels recognized will be given by the
second data byte, or the maximum number of possible voices if this byte is zero. The set of channels
thus defined is a sequential set, starting with the basic channel.

The spec. states that a receiver may ignore any mode that it cannot honor, or switch to an alternate -
"usually" mode 1. Receivers are supposed to default to mode 1 on power up. It is also stated that power
up conditions are supposed to place a receiver in a state where it will only respond to note on / note off
messages, requiring a setting of some sort to enable the other message types.

>> I think this shows the desire to "daisy-chain" devices for performance from a single master again.
We can set a series of instruments to different basic channels, tie 'em together, and let them pass
through the stuff they're not supposed to play to someone down the line.

This suffers greatly from lack of acknowledgement concerning modes and usable channels by a receiver.
You basically have to know your device, what it can do, and what channels it can do it on.

I think most makers have used the "system exclusive" message (see below) to handle channels in a
more sophisticated manner, as well as changing "basic channel" and enabling receipt of different
message types under host control rather than by adjustment on the device alone.

The "parameters" may also be usurped by a manufacturer for mode control, since their purposes are
undefined.

Another HUGE problem with the "daisy-chain" mental set of MIDI is that most devices ALWAYS shovel
whatever they play to their MIDI outs, whether they got it from the keyboard or MIDI in. This means that
you have to cope with the instrument echoing input back at you if you're trying to do an interactive
session with the synthesizer. There is DRASTIC need for some MIDI flag which specifically means that
only locally generated data is to go to MIDI out. From device to device there are ways of coping with
this, none of them good. <<

SYSTEM MESSAGES

The status bytes 0x80 - 0x8f do not have channel numbers in the lower nibble. These bytes are used as
follows:

byte purpose data bytes

0xf0 system exclusive variable length
0xf1 undefined
0xf2 song position 2 - 14 bit value, least significant byte first
0xf3 song select 1 - song number
0xf4 undefined
0xf5 undefined
0xf6 tune request 0
0xf7 EOX (terminator) 0

The status bytes 0xf8 - 0xff are the so-called "real-time" messages. I will discuss these after the
accumulated notes concerning the first bunch.

-50-

Flypaper User's Manual Page 51

-51-

Flypaper User's Manual Page 52

Song position / song select are for control of sequencers. The song position is in beats, which are to be
interpreted as every 6 MIDI clock pulses. These messages determine what is to be played upon receipt
of a "start" real-time message (see below).

The "tune request" is a command to analog synthesizers to tune their oscillators.

The system exclusive message is intended for manufacturers to use to insert any specific messages they
want to which apply to their own product. The following data bytes are all to be "data" bytes, that is they
are all to be in the range 0 - 127. The system exclusive is to be terminated by the 0xf7 terminator byte.
The first data byte is also supposed to be a "manufacturer's id", assigned by a MIDI standards committee.
THE TERMINATOR BYTE IS OPTIONAL - a system exclusive may also be "terminated" by the status
byte of the next message.

>> Yamaha, in particular, caused problems by not sending terminator bytes. As I understand it, the DX-7
sends a system exclusive at something like 80 msec. intervals when it has nothing better to do, just so
you know it's still there, I guess. The messages aren't explicitly terminated, so if you want to handle the
protocol (esp. in hardware), you should be aware that a DX-7 will leave you in "waiting for EOX" state a
lot, and be sending data even when it isn't doing anything. This is all word of mouth, since I've never
personally played with a DX-7. <<

some MIDI ID's:

Sequential Circuits 1
Bon Tempi 0x20
Kawai 0x40
Big Briar 2
S.I.E.L. 0x21
Roland 0x41
Octave / Plateau 3
Korg 0x42
Moog 4
SyntheAxe 0x23
Yamaha 0x43
Passport Designs 5
Lexicon 6
PAIA 0x11
Simmons 0x12
Gentle Electric 0x13
Fairlight 0x14

>> Note the USA / Europe / Japan grouping of codes. Also note that Sequential Circuits snarfed id
number 1 - Sequential Circuits was one of the earliest participators in MIDI, some people claim its
originator.

Two large makers missing from the original lineup were Casio and Oberheim. I know Oberheim is on the
bandwagon now, and Casio also, I believe. Oberheim had their own protocol previous to MIDI, and
when MIDI first came out they were reluctant to ? go along with it. I wonder what we'd be looking at if
Oberheim had pushed their ideas and made them the standard. From what I understand they thought
THEIRS was better, and kind of sulked for a while until the market forced them to go MIDI.

? Nobody seems to care much about these ID numbers. I can only imagine them becoming useful if
additions to the standard message set are placed into system exclusives, with the ID byte to let you
know what added protocol is being used. Are any groups of manufacturers considering consolidating
their efforts in a standard extension set via system exclusives? <<

-52-

Flypaper User's Manual Page 53

REAL TIME MESSAGES.

-53-

Flypaper User's Manual Page 54

This is the final group of status bytes, 0xf8 - 0xff. These bytes are reserved for messages which are
called "real-time" messages because they are allowed to be sent ANYPLACE. This includes in between
data bytes of other messages. A receiver is supposed to be able to receive and process (or ignore) these
messages and resume collection of the remaining data bytes for the message which was in progress.
Realtime messages do not affect the "running status byte" which might be in effect.

? Do any devices REALLY insert these things in the middle of other messages?

All of these messages have no data bytes following (or they could get interrupted themselves, obviously).
The messages:

0xf8 timing clock
0xf9 undefined
0xfa start
0xfb continue
0xfc stop
0xfd undefined
0xfe active sensing
0xff system reset

The timing clock message is to be sent at the rate of 24 clocks per quarter note, and is used to sync.
devices, especially drum machines.

Start / continue / stop are for control of sequencers and drum machines. The continue message causes a
device to pick up at the next clock mark.

>> These things are also designed for performance, allowing control of sequencers and drum machines
from a "master" unit which sends the messages down the line when its buttons are pushed.

I can't tell you much about the trials and tribulations of drum machines. Other folks can, I am sure. <<

The active sensing byte is to be sent every 300 ms. or more often, if it is used. Its purpose is to
implement a timeout mechanism for a receiver to revert to a default state. A receiver is to operate
normally if it never gets one of these, activating the timeout mechanism from the receipt of the first one.

>> My impression is that active sensing is largely unused. <<

The system reset initializes to power up conditions. The spec. says that it should be used "sparingly" and
in particular not sent automatically on power up.

AND NOW, CLIMBING TO THE PULPIT

>> - from here on out.

There are many deficiencies with MIDI, but it IS a standard. As such, it will have to be grappled with.

The electrical specification leaves me with only one question - WHY? What was wanted was a serial
interface, and a perfectly good RS232 specification was to be had. WHY wasn't it used? The baud rate
is too fast to simply convert into something you can feed directly to your serial port via fairly dumb
hardware, also. The "standard" baud rate step you would have to use would be 38.4 Kbaud which very
few hardware interfaces accept. The other alternative is to buffer messages and send them out a slower
baud rate - in fact buffering of characters by some kind of I/O

-54-

Flypaper User's Manual Page 55

processor is very helpful. Hence units like the MPU-401, which does a lot of other stuff, too of course.

The fast baud rate with MIDI was set for two reasons I believe:

1) to allow daisy-chaining of a few devices with no noticeable end to end lag.

2) to allow chords to be played by just sending all the notes down the pipe, the baud rate being fast
enough that they will sound simultaneous.

It doesn't exactly work - I've heard gripes concerning end to end lag on three instrument chains. And
consider chords - at two bytes (running status byte being used) per note, there will be a ten character lag
between the trailing edges of the first and last notes of a six note chord. That's 3.2 ms., assuming no
"dead air" between characters. It's still pretty fast, but on large chords with voices possessing distinctive
attack characteristics, you may hear separate note beginnings.

I think MIDI could have used some means of packetizing chords, or having transaction markers. If a
"chord" message were specified, you could easily break even on byte count with a few notes, given that
we assume all notes of a chord at the same velocity. Transaction markers might be useful in any case,
although I don't know if it would be worth taking over the remaining system message space for them. I
would say yes. I would see having "start" and "end" transaction bytes. On receipt of a "start" a receiver
buffers up but does not act on messages until receipt of the "end" byte. You could then do chords by
sending the notes ahead of time, and precisely timing the "end" marker. Of course, the job of the
hardware in the receiver has been complicated considerably.

The protocol is VERY keyboard oriented - take a look at the use of TWO of the opcodes in the limited
opcode space for "pressure" messages, and the inability to specify semitones or glissando effects except
through the pitch wheel (which took up yet ANOTHER of the opcodes). All keyboards I know of modify
ALL playing notes when they receive pitch wheel data. Also, you have to use a continuous stream of
pitch wheel messages to effect a slide, the pitch wheel step isn't standardized, and on a slide of a large
number of tones you will overrun the range of the wheel.

? Some of these problems would be addressed by a device which allowed its pitch wheel to have
selective control - say modifying only the notes playing on the channel the pitch wheel message is
received in, for instance. The thing for a guitar synthesizer to do, then, would be to use mode 4, one
channel per string, and bends would only affect the one note. You could play a chord on a voice with a
lot of release, then bend a note and not have the entire still sounding chord bend. Any such devices?

I think some of the deficiencies in MIDI might be addressed by different communities of interest
developing a standard set of system exclusives which answer the problem. One perfect area for this, I
think, is a standard set for representation of "non- keyboard / drum machine" instruments which have
continuous pitch capabilities. Like a pedal steel, for instance. Or non-western intervals. Like a sitar.

There is a crying need to do SOMETHING about the "loopback" problem. I would even vote for usurping a
few more bytes in the mode messages to allow you to TURN OFF input echo by the receiver. With the
local control message, you could then at least deal with something that would act precisely like a half or
full duplex terminal. Several patchwork solutions exist to this problem, but there OUGHT to be a standard
way of doing it within the protocol. Another thought is to allow data bytes of other than 0 or 127 to control
echo on the existing local control message.

The lack of acknowledgement is a problem. Another candidate for a standard system exclusive set would
be a series of messages for mode setting with acknowledgement. This set could then also take care of
the loopback problem.

-55-

Flypaper User's Manual Page 56

The complete lack of ability to specify standardized waveforms is probably another source of intense
disappointment to many readers. Trouble is, the standard lingo used by the synthesizer industry and most
working musicians is something which hails back to the first days of synthesizer design, deals with
envelope generators and filters and VCO / LFO hardware parameters, and is very damn difficult to relate
to Fourier series expressing the harmonic content or any other abstractions some people interested in
doing computer composition would like. The parameter set used by the average synthesizer
manufacturer isn't anyplace close to orthogonal in any sense, and is bound to vary wildly in comparison
to anybody elses. There are essentially no abstractions made by most of the industry from underlying
hardware parameters. What standardization exists reflects only the similarity in hardware. This is one
quagmire that we have a long way to go to get out of, I think. It might be possible, eventually, to come up
with translation tables describing the best way to approximate a desired sound on a given device in terms
of its parameter set, but the difficulties are enormous. MIDI has chosen to punt on this one, folks.

Well, that's about it. Good luck with talking to your synthesizer.

Bob McQueer 22 Bcy, 3151

All rites reversed. Reprint what you like.

-56-

